
atasker

Dec 15, 2019

Contents

1 Install 3

2 Why 5

3 Why not standard Python thread pool? 7

4 Why not standard asyncio loops? 9

5 Why not concurrent.futures? 11

6 Code examples 13

i

ii

atasker

Python library for modern thread / multiprocessing pooling and task processing via asyncio.

No matter how your code is written, atasker automatically detects blocking functions and coroutines and launches
them in a proper way, in a thread, asynchronous loop or in multiprocessing pool.

Tasks are grouped into pools. If there’s no space in pool, task is being placed into waiting queue according to their
priority. Pool also has “reserve” for the tasks with priorities “normal” and higher. Tasks with “critical” priority are
always executed instantly.

This library is useful if you have a project with many similar tasks which produce approximately equal CPU/memory
load, e.g. API responses, scheduled resource state updates etc.

Contents 1

atasker

2 Contents

CHAPTER 1

Install

pip3 install atasker

Sources: https://github.com/alttch/atasker

Documentation: https://atasker.readthedocs.io/

3

https://github.com/alttch/atasker
https://atasker.readthedocs.io/

atasker

4 Chapter 1. Install

CHAPTER 2

Why

• asynchronous programming is a perfect way to make your code fast and reliable

• multithreading programming is a perfect way to run blocking code in the background

atasker combines advantages of both ways: atasker tasks run in separate threads however task supervisor and workers
are completely asynchronous. But all their public methods are thread-safe.

5

atasker

6 Chapter 2. Why

CHAPTER 3

Why not standard Python thread pool?

• threads in a standard pool don’t have priorities

• workers

7

atasker

8 Chapter 3. Why not standard Python thread pool?

CHAPTER 4

Why not standard asyncio loops?

• compatibility with blocking functions

• async workers

9

atasker

10 Chapter 4. Why not standard asyncio loops?

CHAPTER 5

Why not concurrent.futures?

concurrent.futures is a great standard Python library which allows you to execute specified tasks in a pool of workers.

atasker method background_task solves the same problem but in slightly different way, adding priorities to the tasks,
while atasker workers do absolutely different job:

• in concurrent.futures worker is a pool member which executes the single specified task.

• in atasker worker is an object, which continuously generates new tasks with the specified interval or on external
event, and executes them in thread or multiprocessing pool.

11

atasker

12 Chapter 5. Why not concurrent.futures?

CHAPTER 6

Code examples

6.1 Start/stop

from atasker import task_supervisor

set pool size
task_supervisor.set_thread_pool(pool_size=20, reserve_normal=5, reserve_high=5)
task_supervisor.start()
...
start workers, other threads etc.
...
optionally block current thread
task_supervisor.block()

stop from any thread
task_supervisor.stop()

6.2 Background task

from atasker import background_task, TASK_LOW, TASK_HIGH, wait_completed

with annotation
@background_task
def mytask():

print('I am working in the background!')
return 777

task = mytask()

optional
result = wait_completed(task)

(continues on next page)

13

atasker

(continued from previous page)

print(task.result) # 777
print(result) # 777

with manual decoration
def mytask2():

print('I am working in the background too!')

task = background_task(mytask2, priority=TASK_HIGH)()

6.3 Async tasks

new asyncio loop is automatically created in own thread
a1 = task_supervisor.create_aloop('myaloop', default=True)

async def calc(a):
print(a)
await asyncio.sleep(1)
print(a * 2)
return a * 3

call from sync code

put coroutine
task = background_task(calc)(1)

wait_completed(task)

run coroutine and wait for result
result = a1.run(calc(1))

6.4 Worker examples

from atasker import background_worker, TASK_HIGH

@background_worker
def worker1(**kwargs):

print('I am a simple background worker')

@background_worker
async def worker_async(**kwargs):

print('I am async background worker')

@background_worker(interval=1)
def worker2(**kwargs):

print('I run every second!')

@background_worker(queue=True)
def worker3(task, **kwargs):

print('I run when there is a task in my queue')

(continues on next page)

14 Chapter 6. Code examples

atasker

(continued from previous page)

@background_worker(event=True, priority=TASK_HIGH)
def worker4(**kwargs):

print('I run when triggered with high priority')

worker1.start()
worker_async.start()
worker2.start()
worker3.start()
worker4.start()

worker3.put('todo1')
worker4.trigger()

from atasker import BackgroundIntervalWorker

class MyWorker(BackgroundIntervalWorker):

def run(self, **kwargs):
print('I am custom worker class')

worker5 = MyWorker(interval=0.1, name='worker5')
worker5.start()

6.4.1 Task supervisor

Task supervisor is a component which manages task thread pool and run task schedulers (workers).

Contents

• Task supervisor

– Usage

– Task priorities

– Pool size

– Poll delay

– Blocking

– Timeouts

– Stopping task supervisor

– aloops: async executors and tasks

* Create

* Using with workers

* Executing own coroutines

* Other supervisor methods

– Multiprocessing

– Custom task supervisor

6.4. Worker examples 15

atasker

– Putting own tasks

– Putting own tasks in multiprocessing pool

– Creating own schedulers

Usage

When atasker package is imported, default task supervisor is automatically created.

from atasker import task_supervisor

thread pool
task_supervisor.set_thread_pool(

pool_size=20, reserve_normal=5, reserve_high=5)
task_supervisor.start()

Warning: Task supervisor must be started before any scheduler/worker or task.

Task priorities

Task supervisor supports 4 task priorities:

• TASK_LOW

• TASK_NORMAL (default)

• TASK_HIGH

• TASK_CRITICAL

from atasker import TASK_HIGH

def test():
pass

background_task(test, name='test', priority=TASK_HIGH)()

Pool size

Parameter pool_size for task_supervisor.set_thread_pool defines size of the task (thread) pool.

Pool size means the maximum number of the concurrent tasks which can run. If task supervisor receive more tasks
than pool size has, they will wait until some running task is finished.

Actually, parameter pool_size defines pool size for the tasks, started with TASK_LOW priority. Tasks with higher
priority have “reserves”: pool_size=20, reserve_normal=5 means create pool for 20 tasks but reserve 5 more places for
the tasks with TASK_NORMAL priority. In this example, when task supervisor receives such task, pool is “extended”,
up to 5 places.

For TASK_HIGH pool size can be extended up to pool_size + reserve_normal + reserve_high, so in the example
above: 20 + 5 + 5 = 30.

16 Chapter 6. Code examples

atasker

Tasks with priority TASK_CRITICAL are always started instantly, no matter how busy task pool is, and thread pool
is being extended for them with no limits. Multiprocessing critical tasks are started as soon as multiprocessing.Pool
object has free space for the task.

To make pool size unlimited, set pool_size=0.

Parameters min_size and max_size set actual system thread pool size. If max_size is not specified, it’s set to pool_size
+ reserve_normal + reserve_high. It’s recommended to set max_size slightly larger manually to have a space for
critical tasks.

By default, max_size is CPU count * 5. You may use argument min_size=’max’ to automatically set minimal pool size
to max.

Note: pool size can be changed while task supervisor is running.

Poll delay

Poll delay is a delay (in seconds), which is used by task queue manager, in workers and some other methods like
start/stop.

Lower poll delay = higher CPU usage, higher poll delay = lower reaction time.

Default poll delay is 0.1 second. Can be changed with:

task_supervisor.poll_delay = 0.01 # set poll delay to 10ms

Blocking

Task supervisor is started in its own thread. If you want to block current thread, you may use method

task_supervisor.block()

which will just sleep while task supervisor is active.

Timeouts

Task supervisor can log timeouts (when task isn’t launched within a specified number of seconds) and run timeout
handler functions:

def warning(t):
t = task thread object
print('Task thread {} is not launched yet'.format(t))

def critical(t):
print('All is worse than expected')

task_supervisor.timeout_warning = 5
task_supervisor.timeout_warning_func = warn
task_supervisor.timeout_critical = 10
task_supervisor.timeout_critical_func = critical

6.4. Worker examples 17

atasker

Stopping task supervisor

task_supervisor.stop(wait=True, stop_schedulers=True, cancel_tasks=False)

Params:

• wait wait until tasks and scheduler coroutines finish. If wait=<number>, task supervisor will wait until corou-
tines finish for the max. wait seconds. However if requested to stop schedulers (workers) or task threads are
currently running, method stop wait until they finish for the unlimited time.

• stop_schedulers before stopping the main event loop, task scheduler will call stop method of all schedulers
running.

• cancel_tasks if specified, task supervisor will try to forcibly cancel all scheduler coroutines.

aloops: async executors and tasks

Usually it’s unsafe to run both schedulers (workers) executors and custom tasks in supervisor’s event loop. Workers
use event loop by default and if anything is blocked, the program may be freezed.

To avoid this, it’s strongly recommended to create independent async loops for your custom tasks. atasker supervisor
has built-in engine for async loops, called “aloops”, each aloop run in a separated thread and doesn’t interfere with
supervisor event loop and others.

Create

If you plan to use async worker executors, create aloop:

a = task_supervisor.create_aloop('myworkers', default=True, daemon=True)
the loop is instantly started by default, to prevent add param start=False
and then use
task_supervisor.start_aloop('myworkers')

To determine in which thread executor is started, simply get its name. aloop threads are called “supervi-
sor_aloop_<name>”.

Using with workers

Workers automatically launch async executor function in default aloop, or aloop can be specified with loop= at init or
_loop= at startup.

Executing own coroutines

aloops have 2 methods to execute own coroutines:

put coroutine to loop
task = aloop.background_task(coro(args))

blocking wait for result from coroutine
result = aloop.run(coro(args))

18 Chapter 6. Code examples

atasker

Other supervisor methods

Note: It’s not recommended to create/start/stop aloops without supervisor

set default aloop
task_supervisor.set_default_aloop(aloop):

get aloop by name
task_supervisor.get_aloop(name)

stop aloop (not required, supervisor stops all aloops at shutdown)
task_supervisor.stop_aloop(name)

get aloop async event loop object for direct access
aloop.get_loop()

Multiprocessing

Multiprocessing pool may be used by workers and background tasks to execute a part of code.

To create multiprocessing pool, use method:

from atasker import task_supervisor

task_supervisor.create_mp_pool(<args for multiprocessing.Pool>)
e.g.
task_supervisor.create_mp_pool(processes=8)

use custom mp Pool

from multiprocessing import Pool

pool = Pool(processes=4)
task_supervisor.mp_pool = pool

set mp pool size. if pool wasn't created before, it will be initialized
with processes=(pool_size+reserve_normal+reserve_high)
task_supervisor.set_mp_pool(

pool_size=20, reserve_normal=5, reserve_high=5)

Custom task supervisor

from atasker import TaskSupervisor

my_supervisor = TaskSupervisor(
pool_size=100, reserve_normal=10, reserve_high=10)

class MyTaskSupervisor(TaskSupervisor):
.......

my_supervisor2 = MyTaskSupervisor()

6.4. Worker examples 19

atasker

Putting own tasks

If you can not use background tasks for some reason, you may put own tasks manually and put it to task supervisor to
launch:

task = task_supervisor.put_task(target=myfunc, args=(), kwargs={},
priority=TASK_NORMAL, delay=None)

If delay is specified, the thread is started after the corresponding delay (seconds).

After the function thread is finished, it should notify task supervisor:

task_supervisor.mark_task_completed(task=task) # or task_id = task.id

If no task_id specified, current thread ID is being used:

note: custom task targets always get _task_id in kwargs
def mytask(**kwargs):

... perform calculations
task_supervisor.mark_task_completed(task_id=kwargs['_task_id'])

task_supervisor.put_task(target=mytask)

Note: If you need to know task id, before task is put (e.g. for task callback), you may generate own and call put_task
with task_id=task_id parameter.

Putting own tasks in multiprocessing pool

To put own task into multiprocessing pool, you must create tuple object which contains:

• unique task id

• task function (static method)

• function args

• function kwargs

• result callback function

import uuid

from atasker import TT_MP

task = task_supervisor.put_task(
target=<somemodule.staticmethod>, callback=<somefunc>, tt=TT_MP)

After the function is finished, you should notify task supervisor:

task_supervisor.mark_task_completed(task_id=<task_id>, tt=TT_MP)

Creating own schedulers

Own task scheduler (worker) can be registered in task supervisor with:

20 Chapter 6. Code examples

atasker

task_supervisor.register_scheduler(scheduler)

Where scheduler = scheduler object, which should implement at least stop (regular) and loop (async) methods.

Task supervisor can also register synchronous schedulers/workers, but it can only stop them when stop method is
called:

task_supervisor.register_sync_scheduler(scheduler)

To unregister schedulers from task supervisor, use unregister_scheduler and unregister_sync_scheduler methods.

6.4.2 Tasks

Task is a Python function which will be launched in the separate thread.

Defining task with annotation

from atasker import background_task

@background_task
def mytask():

print('I am working in the background!')

task = mytask()

It’s not required to notify task supervisor about task completion, background_task will do this automatically as soon
as task function is finished.

All start parameters (args, kwargs) are passed to task functions as-is.

Task function without annotation

To start task function without annotation, you must manually decorate it:

from atasker import background_task, TASK_LOW

def mytask():
print('I am working in the background!')

task = background_task(mytask, name='mytask', priority=TASK_LOW)()

Multiprocessing task

Run as background task

To put task into multiprocessing pool, append parameter tt=TT_MP:

from atasker import TASK_HIGH, TT_MP

task = background_task(
tests.mp.test, priority=TASK_HIGH, tt=TT_MP)(1, 2, 3, x=2)

6.4. Worker examples 21

atasker

Optional parameter callback can be used to specify function which handles task result.

Note: Multiprocessing target function always receives _task_id param.

Run in async way

You may put task from your coroutine, without using callback, example:

from atasker import co_mp_apply, TASK_HIGH

async def f1():
result = await co_mp_apply(

tests.mp.test, args=(1,2,3), kwargs={'x': 2},
priority=TASK_HIGH)

Task object

If you saved only task.id but not the whole object, you may later obtain Task object again:

from atasker import task_supervisor

task = task_supervisor.get_task(task.id)

Task info object fields:

• id task id

• task task object

• tt task type (TT_THREAD, TT_MP)

• priority task priority

• time_queued time when task was queued

• time_started time when task was started

• result task result

• status task status 0 queued 2 delayed 100 started 200 completed -1 canceled

If task info is None, consider the task is completed and supervisor destroyed information about it.

Note: As soon as task is marked as completed, supervisor no longer stores information about it

Wait until completed

You may wait until pack of tasks is completed with the following method:

from atasker import wait_completed

wait_completed([task1, task2, task3], timeout=None)

22 Chapter 6. Code examples

atasker

The method return list of task results if all tasks are finished, or raises TimeoutError if timeout was specified but some
tasks are not finished.

If you call method with a single task instead of list or tuple, single result is returned.

6.4.3 Async jobs

atasker has built-in integration with aiosched - simple and fast async job scheduler.

aiosched schedulers can be automatically started inside aloop:

async def test1():
print('I am lightweight async job')

task_supervisor.create_aloop('jobs')
if aloop id not specified, default aloop is used
task_supervisor.create_async_job_scheduler('default', aloop='jobs',

default=True)
create async job
job1 = task_supervisor.create_async_job(target=test1, interval=0.1)
cancel async job
task_supervisor.cancel_async_job(job=job1)

Note: aiosched jobs are lightweight, don’t report any statistic data and don’t check is the job already running.

6.4.4 Workers

Worker is an object which runs specified function (executor) in a loop.

Contents

• Workers

– Common

* Worker parameters

* Methods

* Overriding parameters at startup

* Executor function

* Asynchronous executor function

* Multiprocessing executor function

– Workers

* BackgroundWorker

* BackgroundAsyncWorker

* BackgroundQueueWorker

* BackgroundEventWorker

* BackgroundIntervalWorker

6.4. Worker examples 23

https://github.com/alttch/aiosched

atasker

Common

Worker parameters

All workers support the following initial parameters:

• name worker name (default: name of executor function if specified, otherwise: auto-generated UUID)

• func executor function (default: worker.run)

• priority worker thread priority

• o special object, passed as-is to executor (e.g. object worker is running for)

• on_error a function which is called, if executor raises an exception

• on_error_kwargs kwargs for on_error function

• supervisor alternative task supervisor

• poll_delay worker poll delay (default: task supervisor poll delay)

Methods

Overriding parameters at startup

Initial parameters name, priority and o can be overriden during worker startup (first two - as _name and _priority)

myworker.start(_name='worker1', _priority=atasker.TASK_LOW)

Executor function

Worker executor function is either specified with annotation or named run (see examples below). The function should
always have **kwargs param.

Executor function gets in args/kwargs:

• all parameters worker.start has been started with.

• _worker current worker object

• _name current worker name

• _task_id if executor function is started in multiprocessing pool - ID of current task (for thread pool, task id =
thread name).

Note: If executor function return False, worker stops itself.

Asynchronous executor function

Executor function can be asynchronous, in this case it’s executed inside task supervisor loop, no new thread is started
and priority is ignored.

When background_worker decorator detects asynchronous function, class BackgroundAsyncWorker is automatically
used instead of BackgroundWorker (BackgroundQueueWorker, BackgroundEventWorker and BackgroundInterval-
Worker support synchronous functions out-of-the-box).

24 Chapter 6. Code examples

atasker

Additional worker parameter loop (_loop at startup) may be specified to put executor function inside external async
loop.

Note: To prevent interference between supervisor event loop and executors, it’s strongly recommended to specify
own async event loop or create aloop.

Multiprocessing executor function

To use multiprocessing, task supervisor mp pool must be created.

If executor method run is defined as static, workers automatically detect this and use multiprocessing pool of task
supervisor to launch executor.

Note: As executor is started in separate process, it doesn’t have an access to self object.

Additionally, method process_result must be defined in worker class to process executor result. The method can stop
worker by returning False value.

Example, let’s define BackgroundQueueWorker. Python multiprocessing module can not pick execution function
defined via annotation, so worker class is required. Create it in separate module as Python multiprocessing can not
pick methods from the module where the worker is started:

Warning: Multiprocessing executor function should always finish correctly, without any exceptions otherwise
callback function is never called and task become “freezed” in pool.

myworker.py

class MyWorker(BackgroundQueueWorker):

executed in another process via task_supervisor
@staticmethod
def run(task, *args, **kwargs):

.. process task
return '<task result>'

def process_result(self, result):
process result

main.py

from myworker import MyWorker

worker = MyWorker()
worker.start()
.....
worker.put_threadsafe('task')
.....
worker.stop()

Workers

6.4. Worker examples 25

atasker

BackgroundWorker

Background worker is a worker which continuously run executor function in a loop without any condition. Loop of
this worker is synchronous and is started in separate thread instantly.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker
def myfunc(*args, **kwargs):

print('I am background worker')

with class
from atasker import BackgroundWorker

class MyWorker(BackgroundWorker):

def run(self, *args, **kwargs):
print('I am a worker too')

myfunc.start()

myworker2 = MyWorker()
myworker2.start()

............

stop first worker
myfunc.stop()
stop 2nd worker, don't wait until it is really stopped
myworker2.stop(wait=False)

BackgroundAsyncWorker

Similar to BackgroundWorker but used for async executor functions. Has additional parameter loop= (_loop in start
function) to specify either async event loop or aloop object. By default either task supervisor event loop or task
supervisor default aloop is used.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker
async def async_worker(**kwargs):

print('I am async worker')

async_worker.start()

with class
from atasker import BackgroundAsyncWorker

class MyWorker(BackgroundAsyncWorker):

async def run(self, *args, **kwargs):
print('I am async worker too')

(continues on next page)

26 Chapter 6. Code examples

atasker

(continued from previous page)

worker = MyWorker()
worker.start()

BackgroundQueueWorker

Background worker which gets data from asynchronous queue and passes it to synchronous or Asynchronous executor.

Queue worker is created as soon as annotator detects q=True or queue=True param. Default queue is asyn-
cio.queues.Queue. If you want to use e.g. priority queue, specify its class instead of just True.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker(q=True)
def f(task, **kwargs):

print('Got task from queue: {}'.format(task))

@background_worker(q=asyncio.queues.PriorityQueue)
def f2(task, **kwargs):

print('Got task from queue too: {}'.format(task))

with class
from atasker import BackgroundQueueWorker

class MyWorker(BackgroundQueueWorker):

def run(self, task, *args, **kwargs):
print('my task is {}'.format(task))

f.start()
f2.start()
worker3 = MyWorker()
worker3.start()
f.put_threadsafe('task 1')
f2.put_threadsafe('task 2')
worker3.put_threadsafe('task 3')

put method is used to put task into worker’s queue. The method is thread-safe.

BackgroundEventWorker

Background worker which runs asynchronous loop waiting for the event and launches synchronous or asynchronous
executor when it’s happened.

Event worker is created as soon as annotator detects e=True or event=True param.

with annotation - function becomes worker executor
from atasker import background_worker

@background_worker(e=True)
def f(task, **kwargs):

print('happened')

(continues on next page)

6.4. Worker examples 27

atasker

(continued from previous page)

with class
from atasker import BackgroundEventWorker

class MyWorker(BackgroundEventWorker):

def run(self, *args, **kwargs):
print('happened')

f.start()
worker3 = MyWorker()
worker3.start()
f.trigger_threadsafe()
worker3.trigger_threadsafe()

trigger_threadsafe method is used to put task into worker’s queue. The method is thread-safe. If worker is triggered
from the same asyncio loop, trigger method can be used instead.

BackgroundIntervalWorker

Background worker which runs synchronous or asynchronous executor function with the specified interval or delay.

Worker initial parameters:

• interval run executor with a specified interval (in seconds)

• delay delay between executor launches

• delay_before delay before executor launch

Parameters interval and delay can not be used together. All parameters can be overriden during startup by adding _
prefix (e.g. worker.start(_interval=1))

Background interval worker is created automatically, as soon as annotator detects one of the parameters above:

@background_worker(interval=1)
def myfunc(**kwargs):

print('I run every second!')

@background_worker(interval=1)
async def myfunc2(**kwargs):

print('I run every second and I am async!')

myfunc.start()
myfunc2.start()

As well as event worker, BackgroundIntervalWorker supports manual executor triggering with worker.trigger() and
worker.trigger_threadsafe()

6.4.5 Task collections

Task collections are useful when you need to run a pack of tasks e.g. on program startup or shutdown. Currently
collections support running task functions only either in a foreground (one-by-one) or as the threads.

Function priority can be specified either as TASK_* (e.g. TASK_NORMAL) or as a number (lower = higher priority).

28 Chapter 6. Code examples

atasker

FunctionCollection

Simple collection of functions.

from atasker import FunctionCollection, TASK_LOW, TASK_HIGH

def error(**kwargs):
import traceback
traceback.print_exc()

startup = FunctionCollection(on_error=error)

@startup
def f1():

return 1

@startup(priority=TASK_HIGH)
def f2():

return 2

@startup(priority=TASK_LOW)
def f3():

return 3

result, all_ok = startup.execute()

TaskCollection

Same as function collection, but stored functions are started as tasks in threads.

Methods execute() and run() return result when all tasks in collection are finished.

6.4.6 Thread local proxy

from atasker import g

if not g.has('db'):
g.set('db', <new_db_connection>)

Supports methods:

6.4.7 Locker helper/decorator

from atasker import Locker

def critical_exception():
do something, e.g. restart/kill myself
import os, signal
os.kill(os.getpid(), signal.SIGKILL)

lock1 = Locker(mod='main', timeout=5)
lock1.critical = critical_exception

(continues on next page)

6.4. Worker examples 29

atasker

(continued from previous page)

use as decorator
@lock1
def test():

thread-safe access to resources locked with lock1

with
with lock1:

thread-safe access to resources locked with lock1

Supports methods:

6.4.8 Debugging

The library uses logger “atasker” to log all events.

Additionally, for debug messages, method atasker.set_debug() should be called.

30 Chapter 6. Code examples

	Install
	Why
	Why not standard Python thread pool?
	Why not standard asyncio loops?
	Why not concurrent.futures?
	Code examples

